## PARTICLE PHYSICS WORKSHEET









| a)  | The results of the $\alpha$ -particle scattering experiment led to the development of the nuclea model for the atom.                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
|     | State the results that suggested that most of the mass of the atom is concentrated in a very small region and most of the atom is empty space. |
|     |                                                                                                                                                |
|     |                                                                                                                                                |
|     |                                                                                                                                                |
|     | [2                                                                                                                                             |
| (b) | State the composition of γ-radiation.                                                                                                          |
|     | [1                                                                                                                                             |
| (c) | Table 7.1 lists the names of three particles and possible classifications for them.                                                            |

Table 7.1

| particle name  | classification |        |        |  |  |
|----------------|----------------|--------|--------|--|--|
| particle flame | baryon         | hadron | lepton |  |  |
| neutrino       |                |        |        |  |  |
| neutron        |                |        |        |  |  |
| positron       |                |        |        |  |  |

Complete Table 7.1 by placing ticks  $(\checkmark)$  in the boxes to indicate the classifications that apply to each particle. [2]



| (d) | of t | e discovery of a particle whe theory of quarks. The 2e, where e is the element | particle is a hadro          |                           |                                     |            |
|-----|------|--------------------------------------------------------------------------------|------------------------------|---------------------------|-------------------------------------|------------|
|     | (i)  | Calculate the mass, in                                                         | u, of the particle. G        | ive your answer           | to three significant fig            | gures.     |
|     |      |                                                                                | m                            | ass =                     |                                     | u [1]      |
|     | (ii) | Determine a possible q<br>Explain your reasoning                               | •                            | f a hadron with           | a charge of +2e.                    |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     | [2]        |
|     |      |                                                                                |                              |                           |                                     | [Total: 8] |
|     |      |                                                                                |                              |                           |                                     |            |
| 2   | (a)  | In the following list, under                                                   | ine <b>all</b> the particles | that are <b>not</b> funda | amental.                            |            |
|     |      | antineutrino                                                                   | baryon                       | nucleon                   | positron                            | [1]        |
|     | (b)  | A nucleus of thorium-230                                                       |                              | ages, by emitting         | $lpha$ -particles and $eta^-$ parti | cles, to   |
|     |      | form a nucleus of lead-20                                                      | 6 ( <sup>206</sup> Pb).      |                           |                                     |            |
|     |      | Determine the total num emitted during the sequenthorium-230.                  |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     |      |                                                                                |                              |                           |                                     |            |
|     | •    |                                                                                | number of α-parti            | cles =                    |                                     |            |
| C   |      |                                                                                | number of $\beta^-$ parti    | cles =                    |                                     |            |
|     |      | Cyrus Ishaq                                                                    | CCC LCS Poots IVV            | )E                        |                                     | [2]        |



| (c) |         |       | n has a charge of –1e, where e is the elementary charge. The quark componincludes a charm antiquark.                        | position of  |
|-----|---------|-------|-----------------------------------------------------------------------------------------------------------------------------|--------------|
|     | Stat    | e an  | d explain a possible flavour (type) of the other quark in the meson.                                                        |              |
| Q3  | <br>(a) |       | nuclide $^{23}_{12}\text{Mg}$ is an isotope of magnesium that undergoes $\beta^+$ decay to lide X according to the equation | [Total: 5]   |
|     |         |       | $^{23}_{12}\text{Mg} \rightarrow \dots X + \dots \beta^+ + ^0_0 v.$                                                         |              |
|     |         | Fou   | r numbers are missing from the equation.                                                                                    |              |
|     |         | (i)   | For the nuclide $^{23}_{12}{\rm Mg}$ , state what is represented by the numbers 23 and 12.                                  |              |
|     |         |       | 23 represents:                                                                                                              |              |
|     |         |       | 12 represents:                                                                                                              | [2]          |
|     |         | (ii)  | Complete the equation by inserting the missing numbers.                                                                     | [2]          |
|     |         |       |                                                                                                                             |              |
|     |         | (iii) | State the name of the group (class) of fundamental particles to which the neutrino belong.                                  | positron and |
|     |         |       |                                                                                                                             | [1]          |



Cyrus Ishaq





ISL, BLL, BCCG, LGS, Roots IVY P5 +923008471504 (b) A radioactive source emits particles from its nuclei when it decays.
Fig. 8.1 shows, for the source, the variation with kinetic energy of the number of particles emitted.



|   |     |        | killetic ellergy of ellitted particles                                                                                                            |          |            |
|---|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
|   |     |        | Fig. 8.1                                                                                                                                          |          |            |
|   |     | Stat   | te how Fig. 8.1 shows that these nuclei do <b>not</b> undergo beta-decay.                                                                         |          |            |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          | [1]        |
|   |     |        |                                                                                                                                                   |          | [Total: 6] |
| • | An  | isolat | ated stationary nucleus X decays by emitting an $lpha$ -particle to form a nucleus Y.                                                             |          |            |
|   | Nuc | cleus  | s Y and nucleus Z are isotopes of the same element.                                                                                               |          |            |
|   | (a) | -      | comparing the number of protons in each nucleus, state and explain whether the nucleus Y is less than, greater than or the same as the charge of: | he char  | ge         |
|   |     | (i)    | nucleus Z                                                                                                                                         |          |            |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          | [1]        |
|   |     | (ii)   | nucleus X.                                                                                                                                        |          |            |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          | [2]        |
|   | (b) |        | e the principle of conservation of momentum to explain why nucleus Y cannot be mediately after the decay of nucleus X.                            | stationa | ary        |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          |            |
|   |     |        |                                                                                                                                                   |          |            |
| _ | •   |        |                                                                                                                                                   |          | [2]        |



Cyrus Ishaq

**©** ▷

[Total: 5]

| 5 | (a) | Nuc   | cleus P and nucleus Q are isotopes of the same element.                                                       |
|---|-----|-------|---------------------------------------------------------------------------------------------------------------|
|   |     | Nuc   | cleus Q is unstable and emits a $\beta^-$ particle to form nucleus R.                                         |
|   |     | (i)   | For nuclei P and Q, compare:                                                                                  |
|   |     |       | the number of protons                                                                                         |
|   |     |       |                                                                                                               |
|   |     |       | the number of neutrons.                                                                                       |
|   |     |       |                                                                                                               |
|   |     | /::\  | [2]                                                                                                           |
|   |     | (ii)  | When nucleus Q decays to form nucleus R, the quark composition of a nucleon changes.                          |
|   |     |       | State the change to the quark composition of the nucleon.                                                     |
|   |     |       | [1]                                                                                                           |
|   |     | (iii) | State the name of another particle that must be emitted from nucleus Q in addition to the $\beta^-$ particle. |
|   |     |       | [1]                                                                                                           |
|   | (b) | A ha  | adron consists of two charm quarks and one bottom quark.                                                      |
|   |     | Det   | ermine, in terms of the elementary charge e, the charge of the hadron.                                        |
|   |     |       |                                                                                                               |
|   |     |       |                                                                                                               |
|   |     |       |                                                                                                               |
|   |     |       |                                                                                                               |
|   |     |       |                                                                                                               |
|   |     |       | charge =e [2]                                                                                                 |

[Total: 6]







Q6 (a) Table 7.1 shows incomplete data for three flavours (types) of quark. The elementary charge

Table 7.1

| flavour | quark  |          | antiquark |          |
|---------|--------|----------|-----------|----------|
| llavoui | symbol | charge/e | symbol    | charge/e |
| up      | u      | + 2/3    | ū         |          |
| down    | d      |          | d         |          |
| charm   | С      |          | c         |          |

|     | Con  | nplete Table 7.1 by inserting the missing charges.                                              | [2] |  |
|-----|------|-------------------------------------------------------------------------------------------------|-----|--|
| (b) |      | Ising the symbols given in Table 7.1, state a possible quark combination for the follow adrons: |     |  |
|     | (i)  | a neutral baryon                                                                                |     |  |
|     |      |                                                                                                 | [1] |  |
|     | (ii) | a meson with a charge of +e.                                                                    |     |  |
|     |      |                                                                                                 | [1] |  |
| (c) | Qua  | irks are fundamental particles.                                                                 |     |  |
|     | Elec | ctrons are in another group (class) of fundamental particle.                                    |     |  |
|     | (i)  | State the name of this group.                                                                   |     |  |
|     |      |                                                                                                 | [1] |  |
|     | (ii) | State the name of another particle in this group.                                               |     |  |
|     |      |                                                                                                 | [1] |  |
|     |      |                                                                                                 |     |  |

[Total: 6]









| Q7 | a)  | A le | pton is an example of a fundamental particle.                                                                 |
|----|-----|------|---------------------------------------------------------------------------------------------------------------|
|    |     | Stat | e what is meant by fundamental particle.                                                                      |
|    |     |      |                                                                                                               |
|    |     |      | [1]                                                                                                           |
|    | (b) |      | mbda particle $\Lambda^0$ is a hadron that consists of an up (u) quark, a down (d) quark and a nge (s) quark. |
|    |     | Sho  | w that the charge on the $\Lambda^0$ particle is zero.                                                        |
|    |     |      |                                                                                                               |
|    |     |      |                                                                                                               |
|    |     |      |                                                                                                               |
|    |     |      |                                                                                                               |
|    |     |      | [2]                                                                                                           |
|    |     |      |                                                                                                               |
|    | (c) | The  | $\Lambda^0$ particle is unstable. It can decay into a neutron (n) and a pion $(\pi^0)$ as shown by            |
|    |     |      | $\Lambda^0 \longrightarrow n + \pi^0$ .                                                                       |
|    |     | The  | $\pi^0$ particle consists of an up quark and an up antiquark.                                                 |
|    |     | (i)  | Compare the properties of an up quark and an up antiquark.                                                    |
|    |     |      |                                                                                                               |
|    |     |      |                                                                                                               |
|    |     |      | [2]                                                                                                           |
|    |     | (ii) | Explain why the neutron is classed as a baryon and the $\pi^0$ particle is classed as a meson.                |
|    |     | . ,  |                                                                                                               |
|    |     |      |                                                                                                               |
|    |     |      | [0]                                                                                                           |
|    |     |      | [2]                                                                                                           |
|    |     |      | [Total: 7]                                                                                                    |
|    |     |      |                                                                                                               |





| 78         | (a) | The nuclide <sup>14</sup> <sub>6</sub> C (carbon-14) is unstable and undergoes β <sup>-</sup> decay, emitting a high-energy |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| <b>~</b> C |     | electron and an antineutrino to form a new nuclide X. The equation for this decay is shown.                                 |

$$^{14}_{\phantom{0}6}C$$
  $\rightarrow$  ...... $X$  + ..... $e^-$  +  $^0_{\phantom{0}0}\overline{\nu}$ 

| Complete the equation. | 12             |
|------------------------|----------------|
| Complete the equation. | [ <del>-</del> |

(b) (i) State the equation for  $\beta^-$  decay in terms of the fundamental particles involved.

(ii) Use your equation from (b)(i) to show how charge is conserved in  $\beta$ -decay.

(c) Neutrinos were first proposed to exist more than 20 years before they were directly detected, in order to explain a particular experimental observation about β-decay.

| (i) | State an observation about $\beta$ -decay that is explained by the existence of neutrinos. |
|-----|--------------------------------------------------------------------------------------------|
|     |                                                                                            |

| [1] |
|-----|

(ii) Suggest how the existence of neutrinos explains the observation in (c)(i).

| <br> | <br> |
|------|------|
| <br> | <br> |

[Total: 6]

[1]

[1]







| 29 | (a) | Describe the structure of an <b>atom</b> of uranium-238, $^{238}_{92}$ U.                     |     |
|----|-----|-----------------------------------------------------------------------------------------------|-----|
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     | [                                                                                             | [2] |
|    | (b) | The decay of uranium-238 is shown by the equation                                             |     |
|    |     | $^{238}_{92}U \rightarrow ^{234}_{90}Th + X.$                                                 |     |
|    |     | For nucleus X, calculate the ratio, in C kg <sup>-1</sup> , of                                |     |
|    |     | charge_                                                                                       |     |
|    |     | mass                                                                                          |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     |                                                                                               |     |
|    |     | 011                                                                                           |     |
|    |     | ratio = Ckg <sup>-1</sup> [                                                                   | 3]  |
|    | (c) | Two particles P and Q each consist of three quarks. These quarks are up (u) or down ( quarks. | d)  |
|    |     | Particle P has no overall charge.                                                             |     |
|    |     | Particle Q has an overall charge of +2e, where e is the elementary charge.                    |     |
|    |     | State the quark composition of:                                                               |     |
|    |     | (i) particle P                                                                                |     |
|    |     | [                                                                                             | [1] |
|    |     | (ii) particle Q.                                                                              |     |







[Total: 7]

| Q10 | (a) | Anı  | unstable nucleus $^{A}_{Z}\!X$ decays by emitting a $eta^-$ particle.                        |
|-----|-----|------|----------------------------------------------------------------------------------------------|
|     |     | (i)  | Determine quantitatively the changes, if any, in A and Z when X decays.                      |
|     |     |      |                                                                                              |
|     |     |      | change in A =                                                                                |
|     |     |      | change in Z =[2]                                                                             |
|     |     | (ii) | In addition to the $\beta^-$ particle, another lepton is emitted during the decay.           |
|     |     |      | State the name of the other lepton that is emitted.                                          |
|     |     |      | [1]                                                                                          |
|     | (b) | A pa | article P is composed of an up quark (u) and a down antiquark $(\overline{d})$ .             |
|     |     | (i)  | Calculate the charge $q$ of particle P in terms of $e$ , where $e$ is the elementary charge. |
|     |     |      | Show your working.                                                                           |
|     |     |      |                                                                                              |
|     |     |      |                                                                                              |
|     |     |      |                                                                                              |
|     |     |      | q = e [2]                                                                                    |
|     |     | (ii) | Particle P belongs to <b>two</b> classes (groups) of particles.                              |
|     |     |      | State the names of these two classes.                                                        |
|     |     |      | 1                                                                                            |
|     |     |      | 2                                                                                            |
|     |     |      | [2]                                                                                          |
|     |     |      | [Total: 7]                                                                                   |
|     |     |      |                                                                                              |









| Q11 | a)  |      | ucleus of caesium-137 ( $^{137}_{55}\text{Cs})$ decays by emitting a $\beta^-$ particle to produce a nucleus of an ment X and an antineutrino. The decay is represented by |
|-----|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |      | $^{137}_{55}Cs \rightarrow {}^{Q}_{S}X + {}^{P}_{R}\beta^{-} + {}^{0}_{0}\overline{v}.$                                                                                    |
|     |     | (i)  | State the number represented by each of the following letters.                                                                                                             |
|     |     |      | P                                                                                                                                                                          |
|     |     |      | Q                                                                                                                                                                          |
|     |     |      | R                                                                                                                                                                          |
|     |     |      | S[2]                                                                                                                                                                       |
|     |     | (ii) | State the name of the class (group) of particles that includes the $\beta^-$ particle and the antineutrino.                                                                |
|     |     |      | [1]                                                                                                                                                                        |
|     | (b) | A pa | article Y has a quark composition of ddd where d represents a down quark.                                                                                                  |
|     |     | A pa | article Z has a quark composition of $\overline{\mathbf{u}}$ d where $\overline{\mathbf{u}}$ represents an up antiquark.                                                   |
|     |     | (i)  | Show that the charges of particles Y and Z are equal.                                                                                                                      |
|     |     |      |                                                                                                                                                                            |
|     |     |      |                                                                                                                                                                            |
|     |     |      |                                                                                                                                                                            |
|     |     |      |                                                                                                                                                                            |

| (ii) | State and explain which particle is a meson and which particle is a baryon. |
|------|-----------------------------------------------------------------------------|
|      | meson:                                                                      |
|      |                                                                             |
|      |                                                                             |
|      | baryon:                                                                     |
|      | •                                                                           |
|      |                                                                             |
|      | [2]                                                                         |

[Total: 7]

[2]







| Q12 | a)  |      | prine-18 $\binom{18}{9}$ F) is an isotope that decays to an isotope of oxygen (O) by the emission of a article.           |     |
|-----|-----|------|---------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (i)  | Complete the nuclear equation for the decay, including all the particles involved.                                        |     |
|     |     |      | <sup>18</sup> <sub>9</sub> F →                                                                                            |     |
|     |     |      | [3]                                                                                                                       |     |
|     |     | (ii) | A quark in the fluorine-18 nucleus changes flavour during the decay. State this change of flavour.                        |     |
|     |     |      | quark to quark. [1]                                                                                                       |     |
|     | (b) | A ha | adron has a charge of -2e, where e is the elementary charge.                                                              |     |
|     |     | (i)  | State and explain whether the hadron is a meson or a baryon.                                                              |     |
|     |     |      |                                                                                                                           |     |
|     |     |      |                                                                                                                           |     |
|     |     |      | [2]                                                                                                                       |     |
|     |     | (ii) | State a possible quark composition for the hadron.                                                                        |     |
|     |     |      |                                                                                                                           |     |
|     |     |      | [1]                                                                                                                       |     |
|     |     |      | [Total: 7]                                                                                                                |     |
| ე13 | (a) |      | nucleus of sodium-22 ( $^{22}_{11}$ Na) decays by emitting a $\beta^+$ particle. A different nucleus is formed the decay. | l   |
|     |     | (i)  | State the name of another lepton that is produced by the decay.                                                           |     |
|     |     |      | [1]                                                                                                                       | l   |
|     |     | (ii) | Determine the nucleon number and the proton number of the nucleus that is formed the decay.                               | by  |
|     |     |      | nucleon number =                                                                                                          |     |
|     |     |      | proton number =                                                                                                           |     |
|     |     |      |                                                                                                                           | [2] |
|     |     | C    | urus lehan                                                                                                                |     |



|     | (iii) | The   | quark composition of a nucleon in the sodium-22 nucleus is changed during the ay.                                                                       |
|-----|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | Des   | cribe the change to the quark composition of the nucleon.                                                                                               |
|     |       |       |                                                                                                                                                         |
|     |       | ••••• | [1]                                                                                                                                                     |
| (b) |       | -     | consists of quarks that are the same flavour (type). The charge of the baryon is –2e, is the elementary charge.                                         |
|     | (i)   | Cald  | culate, in terms of e, the charge of each quark.                                                                                                        |
|     |       |       |                                                                                                                                                         |
|     |       |       | charge = e [1]                                                                                                                                          |
|     | /::\  | Ctot  |                                                                                                                                                         |
|     | (ii)  | Siai  | e a possible flavour (type) of the quarks.                                                                                                              |
|     |       | ••••• | [1]                                                                                                                                                     |
|     |       |       | [Total: 6]                                                                                                                                              |
|     |       |       |                                                                                                                                                         |
| Q14 | (a)   | Nuc   | lei X and Y are different isotopes of the same element.                                                                                                 |
|     |       | Nuc   | leus X is unstable and emits a $\beta^+$ particle to form nucleus Z.                                                                                    |
|     |       | _     | comparing the number of protons in each nucleus, state and explain whether the charge ucleus X is less than, the same as or greater than the charge of: |
|     |       | (i)   | nucleus Y                                                                                                                                               |
|     |       |       |                                                                                                                                                         |
|     |       |       | [1]                                                                                                                                                     |
|     |       | (ii)  | nucleus Z.                                                                                                                                              |
|     |       |       |                                                                                                                                                         |
|     |       |       |                                                                                                                                                         |
|     |       |       |                                                                                                                                                         |









| (b) | На   | adro | ns can be divided i                                                | nto two grou      | ıps (classe                      | s), P an | d Q. Group P is            | baryons.          |                  |
|-----|------|------|--------------------------------------------------------------------|-------------------|----------------------------------|----------|----------------------------|-------------------|------------------|
|     | (i)  | S    | tate the name of gr                                                | oup Q.            |                                  |          |                            |                   |                  |
|     | (ii) | D.   | escribe, in general                                                |                   |                                  |          | nadrons that belo          |                   |                  |
|     |      |      |                                                                    |                   |                                  |          |                            |                   | [1]              |
|     |      |      |                                                                    |                   |                                  |          |                            | Γ                 | Total: 5]        |
| Q1  | 5    |      | ationary nucleus P or<br>rent nucleus Q, as ille                   |                   |                                  | emitting | g an $\alpha$ -particle of | mass 4u to for    | m a              |
|     |      |      |                                                                    |                   | v(                               |          | 1.6 × 10 <sup>7</sup> m s  | s <sup>-1</sup>   |                  |
|     |      |      | nucleus P                                                          |                   | nucle                            | eus Q    | α-particle                 |                   |                  |
|     |      |      | nass 243 u                                                         |                   |                                  |          | mass 4 u                   |                   |                  |
|     |      | BEI  | FORE DECAY                                                         |                   |                                  | AFTER    | DECAY                      |                   |                  |
|     |      |      |                                                                    | Fiç               | g. 7.1                           |          |                            |                   |                  |
|     |      | The  | initial speed of the $\alpha$                                      | particle is 1.6   | $\times 10^{7}  \text{m s}^{-1}$ |          |                            |                   |                  |
|     |      | (a)  | Use the principle of $\alpha$ and the $\alpha$ -particle materials |                   |                                  |          | in why the initial ve      | locities of nucle | us Q             |
|     |      |      |                                                                    |                   |                                  |          |                            |                   |                  |
|     |      |      |                                                                    |                   |                                  |          |                            |                   |                  |
|     |      |      |                                                                    |                   |                                  |          |                            |                   |                  |
|     |      | (b)  | Determine the initial                                              |                   |                                  |          |                            |                   | . [2]            |
|     |      | (5)  | Dotornino dio midal                                                | speed v or na     | oloub Q.                         |          |                            |                   |                  |
|     |      |      |                                                                    |                   |                                  |          |                            |                   |                  |
|     |      |      |                                                                    |                   |                                  |          |                            |                   |                  |
|     |      |      |                                                                    |                   |                                  | v =      |                            | ms <sup>-</sup>   | <sup>1</sup> [2] |
|     | C    | •    | Cyrus Ishaq                                                        | D. J. D. G. G. J. |                                  |          |                            |                   |                  |



(c) Calculate the initial kinetic energy, in MeV, of the  $\alpha$ -particle.

kinetic energy = ..... MeV [3]

(d) A graph of number of neutrons N against proton number Z is shown in Fig. 7.2.



Fig. 7.2

The graph shows a cross that represents nucleus P.

A nucleus R has a nucleon number of 242 and is an isotope of nucleus P.

Nucleus R decays by emitting a  $\beta$ <sup>-</sup> particle to form a different nucleus S.

- (i) On Fig. 7.2, draw a cross to represent:
  - 1. nucleus R (label this cross R)
  - 2. nucleus S (label this cross S).

(ii) State the name of the other lepton, in addition to the  $\beta^-$  particle, that is emitted during the decay of nucleus R.

.....[1]

[Total: 10]

[2]



Cyrus Ishaq



## Table 6.1

|                         | mass/u | charge/e |
|-------------------------|--------|----------|
| α-particle              |        |          |
| β <sup>+</sup> particle |        |          |
| β <sup>–</sup> particle |        |          |

| (b) | Carbon-14 | is radioactive | and decays | by emission | of $\beta^-$ | particles. |
|-----|-----------|----------------|------------|-------------|--------------|------------|
|-----|-----------|----------------|------------|-------------|--------------|------------|

| (i)   | Nuclei do not contain $\beta^-$ particles.                                                            |
|-------|-------------------------------------------------------------------------------------------------------|
|       | Explain the origin of the $\beta^-$ particle that is emitted from the nucleus during $\beta^-$ decay. |
|       |                                                                                                       |
|       |                                                                                                       |
|       | [1]                                                                                                   |
| (ii)  | State the change in the quark composition of a carbon-14 nucleus when it emits a $\beta^-$ particle.  |
|       | [1]                                                                                                   |
| (iii) | Suggest why the $\beta^-$ particles are emitted with a range of different energies.                   |
|       |                                                                                                       |
|       |                                                                                                       |
|       |                                                                                                       |
|       | [2                                                                                                    |
|       |                                                                                                       |

[Total: 8]







| Q17 | (a) | One of the results of the $\alpha$ -particle scattering experiment is that a very small minority of the $\alpha$ -particles are scattered through angles greater than 90°. |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | State what may be inferred about the structure of the atom from this result.                                                                                               |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     | [2]                                                                                                                                                                        |
|     | (b) | An $\alpha$ -particle is made up of other particles. One of these particles is a proton.                                                                                   |
|     |     | State and explain whether a proton is a fundamental particle.                                                                                                              |
|     |     |                                                                                                                                                                            |
|     |     | [1]                                                                                                                                                                        |
|     | (c) | A radioactive source produces a beam of $\alpha$ -particles in a vacuum. The average current produced by the beam is $6.9 \times 10^{-9} A$ .                              |
|     |     | Calculate the average number of $\alpha$ -particles passing a fixed point in the beam in a time of 1.0 minute.                                                             |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     |                                                                                                                                                                            |
|     |     | number =[3]                                                                                                                                                                |
|     |     |                                                                                                                                                                            |



| Q18 (a) | Αp    | proton in a nucleus decays to form a neutron and a $\beta^{+}$ particle.                                            |
|---------|-------|---------------------------------------------------------------------------------------------------------------------|
|         | (i)   | State the name of another lepton that is produced in the decay.  [1]                                                |
|         | (ii)  | State the name of the interaction (force) that gives rise to this decay.                                            |
|         | (iii) | State which of the three particles (proton, neutron or $\beta^+$ particle) has the largest ratio of charge to mass. |
|         | (iv)  | Use the quark model to show that the charge on the proton is +e, where e is the elementary charge.                  |
|         |       |                                                                                                                     |
|         |       | [2]                                                                                                                 |
|         | (v)   | The quark composition of the proton is changed during the decay.                                                    |
|         |       | Describe the change to the quark composition.                                                                       |
|         |       | [1]                                                                                                                 |
| Ω19 (a) | State | e the quark composition of:                                                                                         |
| Q13 (a) |       |                                                                                                                     |
|         | (1)   | a proton [1]                                                                                                        |
|         | (ii)  | a neutron                                                                                                           |
|         |       | [1]                                                                                                                 |
| (       | iii)  | an alpha-particle.                                                                                                  |
|         |       | [2]                                                                                                                 |



| (b) | In th      | e alp | ha-pa     | article scattering experiment, alpha-particles were directed at a thin gold foil.                                        |
|-----|------------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------|
|     | State      | e wh  | at may    | y be inferred from:                                                                                                      |
|     | (i)        | the o | observ    | vation that most alpha-particles pass through the foil                                                                   |
|     |            |       |           | [1]                                                                                                                      |
|     | (ii)       | the o | observ    | vation that some alpha-particles are scattered through angles greater than 90°.                                          |
|     |            |       |           |                                                                                                                          |
|     |            |       |           |                                                                                                                          |
|     |            |       |           | [2]                                                                                                                      |
| Q20 | (a)        | The   |           | ts of the $\alpha$ -particle scattering experiment provide evidence for the structure of the                             |
|     |            | Res   | sult 1:   | The vast majority of the $\alpha\text{-particles}$ pass straight through the metal foil or are deviated by small angles. |
|     |            | Res   | sult 2:   | A very small minority of $\alpha\text{-particles}$ is scattered through angles greater than 90°.                         |
|     |            | Sta   | te wha    | t may be inferred (deduced) from:                                                                                        |
|     |            | (i)   | result    | : 1                                                                                                                      |
|     |            |       |           |                                                                                                                          |
|     |            |       |           | [1]                                                                                                                      |
|     |            | (ii)  | result    | <b>2.</b>                                                                                                                |
|     |            |       |           |                                                                                                                          |
|     |            |       |           | rol                                                                                                                      |
|     | ,          | 'b) A |           | active decay sequence contains four nuclei, P, Q, R and S, as shown.                                                     |
|     | ,          | ט, ר  | rauloa    | ${}^{218}_{84}P \rightarrow {}^{214}_{82}Q \rightarrow {}^{214}_{83}R \rightarrow S$                                     |
|     |            | N     | lucleus   | s S is an isotope of nucleus P.                                                                                          |
|     |            |       |           | termine the proton number and the nucleon number of nucleus S.                                                           |
|     |            | `     | ,         |                                                                                                                          |
|     | <b>O</b> . |       |           | proton number =                                                                                                          |
|     | U          | Су    | rus Ishaq | nucleon number =                                                                                                         |



|     | (ii) | ) T   | he quark composition of a nucleon in Q changes as Q decays to form R.                 |     |
|-----|------|-------|---------------------------------------------------------------------------------------|-----|
|     |      | D     | escribe this change to the quark composition of the nucleon.                          |     |
|     |      |       |                                                                                       |     |
|     |      |       |                                                                                       | [1] |
|     |      |       | [Total:                                                                               | 6]  |
| Q21 | The  | β- p  | particle is emitted from the source with a kinetic energy of $3.4 \times 10^{-16}$ J. |     |
|     | Cald | culat | te the speed at which the $\beta^-$ particle is emitted.                              |     |
|     |      |       |                                                                                       |     |
|     |      |       |                                                                                       |     |
|     |      |       |                                                                                       |     |
|     |      |       |                                                                                       |     |
|     |      |       | speed = ms <sup>-1</sup> [2]                                                          |     |
| (c) | The  | β- p  | particle is produced by the decay of a neutron.                                       |     |
|     | (i)  | Cor   | mplete the equation below to represent the decay of the neutron.                      |     |
|     |      |       | ${}^{1}_{0}$ n $\rightarrow {}^{0}_{-1}\beta^{-}$ + + [2]                             |     |
|     | (ii) | Sta   | te the name of the group (class) of particles that includes:                          |     |
|     |      | 1.    | neutrons                                                                              |     |
|     |      |       |                                                                                       |     |
|     |      | 2.    | $\beta^-$ particles.                                                                  |     |
|     |      |       | [2]                                                                                   |     |



| Q22 | A nucleus of plutonium-238 ( $^{238}_{94}$ Pu) decays by emitting an $lpha$ -particle to produce a new nucleus X |
|-----|------------------------------------------------------------------------------------------------------------------|
|     | and 5.6 MeV of energy. The decay is represented by                                                               |

$$^{238}_{94}$$
Pu  $\rightarrow$  X +  $\alpha$  + 5.6 MeV.

(a) Determine the number of protons and the number of neutrons in nucleus X.

(b) Calculate the number of plutonium-238 nuclei that must decay in a time of 1.0 s to produce a power of 0.15 W.

[Total: 4]

(a) The decay of a nucleus  $^{35}_{18}$ Ar by  $\beta^+$  emission is represented by

$$^{35}_{18} Ar \rightarrow X + \beta^+ + Y.$$

A nucleus X and two particles,  $\beta^{\scriptscriptstyle +}$  and Y, are produced by the decay.

State:

(i) the proton number and the nucleon number of nucleus X

nucleon number = .....[1]

(ii) the name of the particle represented by the symbol Y.

......[1]



Cyrus Ishaq



| D)          | Anac  | aron consists of two down quarks and one strange quark.                                                                                                                                       |
|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Deter | mine, in terms of the elementary charge $e$ , the charge of this hadron.                                                                                                                      |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       | charge =[2]                                                                                                                                                                                   |
|             |       | [Total: 4]                                                                                                                                                                                    |
| <u>2</u> 24 |       | stationary nucleus of a radioactive isotope X decays by emitting an $\alpha$ -particle to produce a cleus of neptunium-237 and 5.5 MeV of energy. The decay is represented by                 |
|             |       | $X \rightarrow \frac{237}{93} Np + \alpha + 5.5 MeV.$                                                                                                                                         |
|             | (a)   | Calculate the number of protons and the number of neutrons in a nucleus of X.                                                                                                                 |
|             |       |                                                                                                                                                                                               |
|             |       | number of protons =                                                                                                                                                                           |
|             |       | number of neutrons =                                                                                                                                                                          |
|             |       | [2]                                                                                                                                                                                           |
|             | (b)   | Explain why the energy transferred to the $\alpha$ -particle as kinetic energy is less than the 5.5 MeV of energy released in the decay process.                                              |
|             |       |                                                                                                                                                                                               |
|             |       | [1]                                                                                                                                                                                           |
|             | (c)   | A sample of X is used to produce a beam of $\alpha$ -particles in a vacuum. The number of $\alpha$ -particles passing a fixed point in the beam in a time of 30 s is 6.9 × 10 <sup>11</sup> . |
|             |       | (i) Calculate the average current produced by the beam of $\alpha$ -particles.                                                                                                                |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       |                                                                                                                                                                                               |
|             |       | current = A [2]                                                                                                                                                                               |
|             |       | Cyrus Ishaq ISL, BLL, BCCG, LGS, Roots IVY P5                                                                                                                                                 |



|                | a t  | ime of 30 s.                                                                                                                                                  |
|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      | power = W [2]                                                                                                                                                 |
|                |      | [Total: 7]                                                                                                                                                    |
| Q25 <b>(a)</b> |      | e of the results of the $\alpha$ -particle scattering experiment is that a very small minority of the articles are scattered through angles greater than 90°. |
|                | Sta  | te what may be inferred about the structure of the atom from this result.                                                                                     |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      | [2]                                                                                                                                                           |
| <b>(b)</b>     |      |                                                                                                                                                               |
| (D)            |      | adron has an overall charge of $+e$ , where $e$ is the elementary charge. The hadron contains ee quarks. One of the quarks is a strange (s) quark.            |
|                | (i)  | State the charge, in terms of e, of the strange (s) quark.                                                                                                    |
|                |      |                                                                                                                                                               |
|                |      | charge =[1]                                                                                                                                                   |
|                | (ii) | The other two quarks in the hadron have the same charge as each other.                                                                                        |
|                |      | By considering charge, determine a possible type (flavour) of the other two quarks. Explain your working.                                                     |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      |                                                                                                                                                               |
|                |      | [2]                                                                                                                                                           |
|                |      | [Total: 5]                                                                                                                                                    |
|                | _    | 6                                                                                                                                                             |

(ii) Determine the total power, in W, that is produced by the decay of  $6.9 \times 10^{11}$  nuclei of X in



Cyrus Ishaq



| Q26 [ <b>a)</b> | Sta   | te <b>one</b> difference between a hadron and a lepton.                                                            |
|-----------------|-------|--------------------------------------------------------------------------------------------------------------------|
|                 |       |                                                                                                                    |
|                 |       | [1]                                                                                                                |
| (b)             |       | roton within a nucleus decays to form a neutron and two other particles. A partial equation epresent this decay is |
|                 |       | $_{1}^{1}p \rightarrow _{0}^{1}n + + +$                                                                            |
|                 | (i)   | Complete the equation. [2]                                                                                         |
|                 | (ii)  | State the name of the interaction or force that gives rise to this decay.                                          |
|                 |       | [1]                                                                                                                |
|                 | (iii) | State three quantities that are conserved in the decay.                                                            |
|                 |       | 1                                                                                                                  |
|                 |       | 2                                                                                                                  |
|                 |       | 3                                                                                                                  |
|                 |       | [3]                                                                                                                |

(c) Use the quark composition of a proton to show that it has a charge of +e, where e is the elementary charge.

Explain your working.

[3]

[Total: 10]







| (a) | Stat        | te <b>one</b> d | ifference between a hadron and a lepton.                                                                             |
|-----|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------|
|     |             |                 |                                                                                                                      |
|     |             |                 | [1]                                                                                                                  |
| (b) | (i)         | State th        | ne quark composition of a proton and of a neutron.                                                                   |
|     |             | proton:         |                                                                                                                      |
|     |             | neutror         | r:                                                                                                                   |
|     |             |                 | [2]                                                                                                                  |
|     | (ii)        | Use yo          | ur answer in (i) to determine the quark composition of an $\alpha$ -particle.                                        |
|     |             |                 |                                                                                                                      |
|     |             |                 |                                                                                                                      |
|     |             |                 | composition:[1]                                                                                                      |
| (c) | The<br>ator |                 | of the $\alpha$ -particle scattering experiment provide evidence for the structure of the                            |
|     | resu        | ult 1:          | The vast majority of $\alpha\text{-particles}$ pass straight through the metal foil or are deviated by small angles. |
|     | resu        | ult 2:          | A very small minority of $\alpha\text{-particles}$ are scattered through angles greater than 90°.                    |
|     | State what  |                 | may be inferred from                                                                                                 |
|     | (i)         | result 1        | ,                                                                                                                    |
|     |             |                 |                                                                                                                      |
|     |             |                 | [1]                                                                                                                  |
|     | (ii)        | result 2        |                                                                                                                      |
|     |             |                 |                                                                                                                      |
|     |             |                 |                                                                                                                      |
|     |             |                 |                                                                                                                      |
|     |             |                 | [2]                                                                                                                  |
|     |             |                 | [Total: 7]                                                                                                           |



Q27





| 228 | (a) | State the name of the class (group) to which each of the following belongs: |
|-----|-----|-----------------------------------------------------------------------------|

| electron |  |
|----------|--|
| neutron  |  |

neutrino .....

proton .....

- (b) A proton may decay into a neutron together with two other particles.
  - (i) Complete the following to give an equation that represents this proton decay.

$$^{1}_{1}p \rightarrow \cdots n + \cdots n + \cdots + \cdots \dots$$
 [2]

(ii) Write an equation for this decay in terms of quark composition.

Q29 A neutron within a nucleus decays to produce a proton, a  $\beta^-$  particle and an (electron) antineutrino.

$$n \rightarrow p + \beta^- + \bar{\nu}$$

(a) Use the quark composition of the neutron to show that the neutron has no charge.



Cyrus Ishaq



[2]

| (b) | Complete Fig.          | 8.1   | by giving   | appropriate  | values of | the | charge | and | the mas | s of th | e proton, |
|-----|------------------------|-------|-------------|--------------|-----------|-----|--------|-----|---------|---------|-----------|
|     | the $\beta^-$ particle | and t | the (electr | on) antineut | rino.     |     |        |     |         |         |           |

|        | proton | β <sup>-</sup> particle | antineutrino |
|--------|--------|-------------------------|--------------|
| charge |        |                         |              |
| mass   |        |                         |              |

|     |      | Fig. 8.1                                                                                                              |
|-----|------|-----------------------------------------------------------------------------------------------------------------------|
|     |      | [2]                                                                                                                   |
|     |      | [Total: 5]                                                                                                            |
| Q30 | A sa | ample of a radioactive isotope emits a beam of $\beta^-$ radiation.                                                   |
|     | (a)  | State the change, if any, to the number of neutrons in a nucleus of the sample that emits a $\beta^-\text{particle}.$ |
|     |      | [1]                                                                                                                   |
|     | (b)  | The number of $\beta^-$ particles passing a fixed point in the beam in a time of 2.0 minutes is 9.8 $\times10^{10}.$  |
|     |      | Calculate the current, in pA, produced by the beam of $\beta^-$ particles.                                            |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      | current =                                                                                                             |
|     | (c)  | Suggest why the $\beta^-$ particles are emitted with a range of kinetic energies.                                     |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      | [2]                                                                                                                   |

[Total: 6]









| $\bigcirc$ 4 |                                                                                                                                                                                                           |    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Q4 —         | Y and Z have equal numbers of protons and (so) they have the same charge                                                                                                                                  | B1 |
| 8(a)(ii)     | Y has (two) fewer protons (than X)                                                                                                                                                                        | M1 |
|              | (so) Y has less charge (than X)                                                                                                                                                                           | A1 |
| 8(b)         | (total) momentum before decay is zero                                                                                                                                                                     | B1 |
|              | or X has zero / no momentum                                                                                                                                                                               |    |
|              | (total momentum after decay must be zero so) Y must have equal (and opposite) momentum to $\alpha$ -particle (so cannot be stationary / must have speed/velocity)                                         | B1 |
| Q5 _         | number of protons: equal/same                                                                                                                                                                             | B1 |
| ,            | number of neutrons: unequal/different                                                                                                                                                                     | B1 |
| 8(a)(ii)     | down (quark) changes to up (quark)                                                                                                                                                                        | B1 |
|              | or up down down (quarks) change to up up down (quarks)                                                                                                                                                    |    |
| 8(a)(iii)    | (electron) antineutrino                                                                                                                                                                                   | B1 |
| 8(b)         | charm (quark charge) is (+)2/3(e)                                                                                                                                                                         | C1 |
|              | or<br>2 charm (quark charges) is (+)4/3(e)                                                                                                                                                                |    |
|              | or bottom (quark charge) is -1/3(e)                                                                                                                                                                       |    |
|              | charge = +2/3(e) + 2/3(e) -1/3(e)                                                                                                                                                                         | A1 |
|              | = (+)1( <i>e</i> )                                                                                                                                                                                        |    |
| <u></u>      | down charge = $-1/3(e)$ and charm charge = $(+)2/3(e)$                                                                                                                                                    | B1 |
| Qb           | all antiquarks have opposite sign and same (non-zero) magnitude of charge as the corresponding quarks                                                                                                     | B1 |
| 7(b)(i)      | udd <b>or</b> cdd                                                                                                                                                                                         | B1 |
| 7(b)(ii)     | ud or cd                                                                                                                                                                                                  | B1 |
| 7(c)(i)      | lepton(s)                                                                                                                                                                                                 | B1 |
| 7(c)(ii)     | positron / neutrino / antineutrino                                                                                                                                                                        | B1 |
| - (-)()      |                                                                                                                                                                                                           |    |
| Q7 .         | particle with no internal structure / particle which cannot be broken down into anything smaller                                                                                                          | A1 |
|              | charges: $u = (+)\frac{2}{3}(e)$ or $d = -\frac{1}{3}(e)$ or $s = -\frac{1}{3}(e)$                                                                                                                        | C1 |
|              | $(+)\frac{2}{3}(e) - \frac{1}{3}(e) - \frac{1}{3}(e) = 0(e)$                                                                                                                                              | A1 |
| 6(c)(i)      | <ul> <li>same/equal mass</li> <li>same/equal (magnitude of) charge</li> <li>both fundamental (particles)</li> <li>opposite (sign of) charge</li> <li>one is matter and the other is antimatter</li> </ul> | B2 |



6(c)(ii)

Cyrus Ishaq

pion/meson consists of one quark and one antiquark



neutron/baryon consists of three quarks

Any two points, 1 mark each.



ISL, BLL, BCCG, LGS, Roots IVY P5 +923008471504 В1

| _                  |                                                                                                                    |    |
|--------------------|--------------------------------------------------------------------------------------------------------------------|----|
| Q8                 | <sup>14</sup> <sub>7</sub> X                                                                                       | B1 |
|                    | <sup>0</sup> <sub>-1</sub> e <sup>-</sup>                                                                          | B1 |
| 6(b)(i)            | d $\rightarrow$ u + e <sup>-</sup> + $\overline{\nu}$ or udd $\rightarrow$ uud + e <sup>-</sup> + $\overline{\nu}$ | B1 |
| 6(b)(ii)           | -1/3 (e) = +2/3 (e) -1(e) (+0)                                                                                     | B1 |
|                    | or                                                                                                                 |    |
|                    | 2/3(e) - 1/3(e) - 1/3(e) = 2/3(e) + 2/3(e) - 1/3(e) - 1(e) (+0)                                                    |    |
| 6(c)(i)            | electrons / β-particles (emitted from the nucleus) have a (continuous) range of / different (kinetic) energies     | B1 |
| 6(c)(ii)           | the (emitted) neutrinos take varying amounts of the (same total) energy (released in the decay)                    | B1 |
|                    |                                                                                                                    |    |
| <u></u>            | 92 protons and 146 neutrons (in nucleus)                                                                           | В1 |
| Q <sub>3</sub>     | 92 (orbital) electrons                                                                                             | B1 |
| 7(b)               | charge = 2e                                                                                                        | C1 |
|                    | $(=2 \times 1.60 \times 10^{-19} \text{ C})$                                                                       |    |
|                    | mass = 4u                                                                                                          | C1 |
|                    | $(= 4 \times 1.66 \times 10^{-27} \text{ kg})$                                                                     |    |
|                    | ratio = $(2 \times 1.60 \times 10^{-19})/(4 \times 1.66 \times 10^{-27})$                                          | A1 |
|                    | $= 4.8 \times 10^7 \mathrm{C  kg^{-1}}$                                                                            |    |
| 7(c)(i)            | up down down / udd                                                                                                 | B1 |
| 7(c)(ii)           | up up up/uuu                                                                                                       | B1 |
|                    |                                                                                                                    |    |
| Q10                | change in A = 0                                                                                                    | A1 |
| <u> </u>           | change in Z = (+)1                                                                                                 | A1 |
| 7(a)(ii)           | (electron) antineutrino                                                                                            | B1 |
| 7(b)(i)            | up/u (charge) = $(+)\frac{2}{3}e$ or antidown/ $\bar{d}$ = $(+)\frac{1}{3}e$                                       | M1 |
|                    | or 2 1                                                                                                             |    |
|                    | $(q) = \frac{2}{3}e + \frac{1}{3}e$                                                                                |    |
|                    | q = (+)1e                                                                                                          | A1 |
| 7(b)(ii)           | hadron(s)                                                                                                          | B1 |
|                    | meson(s)                                                                                                           | B1 |
| Q11                | P = 0 and Q = 137                                                                                                  | A1 |
|                    | R = -1 and S = 56                                                                                                  | A1 |
| 7(a)(ii)           | lepton(s)                                                                                                          | B1 |
| 7(b)(i)            | (charge of ddd/Y =) $-\frac{1}{3}(e) - \frac{1}{3}(e) = -1(e)$                                                     | В1 |
|                    | (charge of $ud/Z = 1 - \frac{1}{3}(e) - \frac{2}{3}(e) = -1(e)$                                                    | B1 |
| 7(b)(ii)           | meson: Z / $\overline{u}$ d because consists of a quark and an antiquark                                           | В1 |
| •                  | baryon: Y / ddd because consists of three quarks                                                                   | B1 |
| C                  | Cyrus Ishaq ISL, BLL, BCCG, LGS, Roots IVY P5                                                                      |    |
| PHYSICS WITH CYRUS | <b>(</b> ) ► +923008471504                                                                                         |    |

| Q12         | ${}_{9}^{8}F \rightarrow {}_{8}^{18}O + {}_{(+)1}^{0}\beta^{(+)} + {}_{(0)}^{0}\nu_{(e)}$                                                               | В3         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|             | v <b>or</b> neutrino (B1)                                                                                                                               |            |
|             | <sup>0</sup> <sub>(+)1</sub> β <sup>(+)</sup> (B1)                                                                                                      |            |
|             | <sup>18</sup> <sub>8</sub> O (B1)                                                                                                                       |            |
| 7(a)(ii)    | up quark to down quark                                                                                                                                  | B1         |
| 7(b)(i)     | must be three (anti)quarks as largest (negative) quark charge is (-)2/3 (e)                                                                             | M1         |
|             | or                                                                                                                                                      |            |
|             | mesons can only have a charge of 0 or $\pm 1(e)$                                                                                                        |            |
|             | (so hadron is) a baryon                                                                                                                                 | <b>A</b> 1 |
| 7(b)(ii)    | any combination of three from:                                                                                                                          | B1         |
|             | antiup (quark) / up antiquark and/or anticharm (quark) / charm antiquark and/or antitop (quark) / top antiquark                                         |            |
| <b>∩</b> 12 |                                                                                                                                                         |            |
| Q13         | (electron) neutrino                                                                                                                                     | B1         |
| 7(a)(ii)    | nucleon number = 22                                                                                                                                     | A1         |
|             | proton number = 10                                                                                                                                      | A1         |
| 7(a)(iii)   | up up down changes to up down down                                                                                                                      | B1         |
|             | or<br>up changes to down                                                                                                                                |            |
| 7(b)(i)     | charge = − ¾ e                                                                                                                                          | A1         |
| 7(b)(ii)    | antiup / anticharm / antitop                                                                                                                            | B1         |
| Q14         |                                                                                                                                                         |            |
| 7(a)(i)     | X has same number of protons as Y (and so) charge of X is the same as the charge of Y                                                                   | B1         |
| 7(a)(ii)    | X has (one) more proton (than Z)                                                                                                                        | M1         |
|             | (so) X has greater charge (than Z)                                                                                                                      | A1         |
| 7(b)(i)     | meson(s)                                                                                                                                                | B1         |
| 7(b)(ii)    | one quark and one antiquark                                                                                                                             | B1         |
| Q15         | (total) momentum before (decay) is zero  or P has zero momentum                                                                                         | B1         |
|             | (total momentum after decay must be zero so) α-particle and Q have momenta in opposite directions (and therefore velocities are in opposite directions) | B1         |
| 7(b)        | $p = 239 \text{ (u)} \times v \text{ or } 4 \text{ (u)} \times 1.6 \times 10^7$                                                                         | C1         |
|             | 239 (u) $\times$ v = 4 (u) $\times$ 1.6 $\times$ 10 <sup>7</sup>                                                                                        | A1         |
|             | $v = 2.7 \times 10^5 \mathrm{m  s^{-1}}$                                                                                                                |            |
| 7(c)        | $E_{(K)} = \frac{1}{2}mv^2$                                                                                                                             | C1         |
|             | $= \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times (1.6 \times 10^{7})^{2}$                                                                     | C1         |
|             | $= 8.5 \times 10^{-13} (J)$                                                                                                                             | A1         |
|             | = $8.5 \times 10^{-13} / 1.60 \times 10^{-13}$ (MeV) Cyrus Ishaq ISL, BLL, BCCG, LGS, Roots                                                             | IVV DE     |
|             | = 5.3 MeV PHYSICS WITH C Y R U S +923008471504                                                                                                          |            |

| Q16       | α-ра            | rticle mass                                                       | given as 4u    |                                                                 | B1 |  |  |  |
|-----------|-----------------|-------------------------------------------------------------------|----------------|-----------------------------------------------------------------|----|--|--|--|
| <b>α_</b> | α-ра            | rticle charge                                                     | e given as (+) | 2e                                                              | B1 |  |  |  |
|           | both            | both β-particles mass given as 0.0005 u                           |                |                                                                 |    |  |  |  |
|           | β+ ch           | $\beta^+$ charge given as (+)e and $\beta^-$ charge given as $-e$ |                |                                                                 |    |  |  |  |
|           | (Con            | (Completed table:                                                 |                |                                                                 |    |  |  |  |
|           | mass/u charge/e |                                                                   |                |                                                                 |    |  |  |  |
|           | α               | 4                                                                 | (+)2           |                                                                 |    |  |  |  |
|           | β+              | 0.0005                                                            | (+)1           |                                                                 |    |  |  |  |
|           | β-              | 0.0005                                                            | -1             |                                                                 |    |  |  |  |
|           | )               |                                                                   |                | J                                                               |    |  |  |  |
| 6(b)(i)   | neut            | ron decays i                                                      | into proton an | d an electron / β <sup>-</sup> particle                         | B1 |  |  |  |
| 6(b)(ii)  | dowr            | n to up                                                           |                |                                                                 | B1 |  |  |  |
| 6(b)(iii) | (elec           | (electron) antineutrino(s) emitted                                |                |                                                                 |    |  |  |  |
|           | ener            | gy (released                                                      | d in decay)/mo | omentum shared between antineutrino and β <sup>-</sup> particle | B1 |  |  |  |
|           |                 |                                                                   |                |                                                                 |    |  |  |  |
|           |                 |                                                                   |                |                                                                 |    |  |  |  |
| Q17       | the             | nucleus is c                                                      | harged         |                                                                 | B1 |  |  |  |
|           | the             | the majority of the mass (of atom) is in the nucleus              |                |                                                                 |    |  |  |  |
| 6(b)      | mad             | le up of qua                                                      | rks (so) not a | fundamental particle                                            | B1 |  |  |  |
| 6(c)      | (O =            | :) 6.9 × 10 <sup>-9</sup>                                         | × 60           |                                                                 | C1 |  |  |  |

| Q17  | the nucleus is charged                                                      | B1 |
|------|-----------------------------------------------------------------------------|----|
| ,    | the majority of the mass (of atom) is in the nucleus                        | B1 |
| 6(b) | made up of quarks (so) not a fundamental particle                           | B1 |
| 6(c) | $(Q =) 6.9 \times 10^{-9} \times 60$                                        | C1 |
|      | number = $(6.9 \times 10^{-9} \times 60) / (2 \times 1.60 \times 10^{-19})$ | C1 |
|      | $= 1.3 \times 10^{12}$                                                      | A1 |

|               | the majority of the mass (of atom) is in the nucleus                        | B1 |
|---------------|-----------------------------------------------------------------------------|----|
| 6(b)          | made up of quarks (so) not a fundamental particle                           | B1 |
| 6(c)          | $(Q =) 6.9 \times 10^{-9} \times 60$                                        | C1 |
|               | number = $(6.9 \times 10^{-9} \times 60) / (2 \times 1.60 \times 10^{-19})$ | C1 |
|               | $= 1.3 \times 10^{12}$                                                      | A1 |
|               |                                                                             |    |
| ໄ∩1ຂ <i>ີ</i> | (electron) neutrino                                                         | B1 |

| B1 |
|----|
|    |
|    |
| C1 |
| C1 |
| A1 |
|    |
| B1 |
|    |
|    |

| 6(a)(iii) | β <sup>+</sup> (particle)                                                                                               | B1 |
|-----------|-------------------------------------------------------------------------------------------------------------------------|----|
| 6(a)(iv)  | (quark structure is) up up down <b>or</b> uud                                                                           | В1 |
|           | (2/3)e + (2/3)e - (1/3)e = (+)e                                                                                         | В1 |
| 6(a)(v)   | up up down changes to up down down $\mathbf{or}$ uud $\to$ udd $\mathbf{or}$ up changes to down $\mathbf{or}$ u $\to$ d | B1 |
| 010       |                                                                                                                         |    |
| Q19       | up up down                                                                                                              | B1 |
| 6(a)(ii)  | up down down                                                                                                            | B1 |
|           |                                                                                                                         |    |

|                  | (2/3)e + (2/3)e - (1/3)e = (+)e                                                                                          | В1 |
|------------------|--------------------------------------------------------------------------------------------------------------------------|----|
| 6(a)(v)          | up up down changes to up down down $$ or $$ uud $\rightarrow$ udd $$ or $$ up changes to down $$ or $$ u $\rightarrow$ d | В1 |
| <b>∩</b> 10 -    |                                                                                                                          |    |
| Q19 <sub>]</sub> | up up down                                                                                                               | B1 |
| 6(a)(ii)         | up down down                                                                                                             | В1 |
| 6(a)(iii)        | (alpha-particle is) 2 protons and 2 neutrons                                                                             | C1 |
|                  | 6 up, 6 down                                                                                                             | A1 |
| 6(b)(i)          | most of an atom is empty space                                                                                           | B1 |

the nucleus (volume) is (very) small compared with the atom 6(b)(ii) the nucleus is charged **B1** В1 the majority of the mass of atom is in the nucleus





| Q20      | most of the atom is empty space or                                                   | B1         |
|----------|--------------------------------------------------------------------------------------|------------|
|          | the nucleus (volume) is very small compared to the atom                              |            |
| 7(a)(ii) | the nucleus is charged                                                               | В1         |
|          | the mass is concentrated in nucleus / small region / small volume / small core       | B1         |
|          | or the majority of the mass is in nucleus / small region / small volume / small core |            |
| 7(b)(i)  | proton number = 84                                                                   | <b>A</b> 1 |
|          | nucleon number = 214                                                                 | <b>A</b> 1 |
| 7(b)(ii) | up down down changes to up up down / udd → uud                                       | В1         |
|          | or down changes to up / d → u                                                        |            |
|          |                                                                                      | ,          |
| Q21      | $E = \frac{1}{2}mv^2$                                                                | C1         |
|          | $3.4 \times 10^{-16} = \frac{1}{2} \times 9.11 \times 10^{-31} \times v^2$           | A1         |
|          |                                                                                      |            |

| _        |                                                                            |
|----------|----------------------------------------------------------------------------|
| Q21      | $E = \frac{1}{2}mv^2$                                                      |
|          | $3.4 \times 10^{-16} = \frac{1}{2} \times 9.11 \times 10^{-31} \times v^2$ |
|          | $v = 2.7 \times 10^7 \mathrm{ms^{-1}}$                                     |
| 7(c)(i)  | <sup>1</sup> <sub>1</sub> p                                                |
|          | 0-<br>0V(e)                                                                |
| 7(c)(ii) | 1. hadrons                                                                 |
|          | 2. leptons                                                                 |
|          |                                                                            |
| Q22      | number of protons = 92                                                     |
| ۷۷۷      | number of neutrons = 142                                                   |

|          | $v = 2.7 \times 10^7 \mathrm{m  s^{-1}}$                                                               |            |
|----------|--------------------------------------------------------------------------------------------------------|------------|
| 7(c)(i)  | <sup>1</sup> <sub>1</sub> P                                                                            | A1         |
|          | 0-<br>0V(e)                                                                                            | A1         |
| 7(c)(ii) | 1. hadrons                                                                                             | B1         |
|          | 2. leptons                                                                                             | B1         |
|          |                                                                                                        |            |
| Q22      | number of protons = 92                                                                                 | <b>A</b> 1 |
| QZZ      | number of neutrons = 142                                                                               | <b>A</b> 1 |
| 7(b)     | $5.6 \text{ MeV} = 5.6 \times 1.60 \times 10^{-19} \times 10^6 \ \ (= 8.96 \times 10^{-13} \text{ J})$ | C1         |
|          | number = $0.15/(5.6 \times 1.60 \times 10^{-13})$                                                      | A1         |
|          | = 1.7 × 10 <sup>11</sup>                                                                               |            |
|          | or                                                                                                     |            |
|          | $0.15 \text{ W} = 0.15 / (1.60 \times 10^{-19} \times 10^6) = 9.38 \times 10^{11} \text{ MeV s}^{-1}$  | (C1)       |
|          | number = 9.38 × 10 <sup>11</sup> /5.6                                                                  | (A1)       |
|          | = 1.7 × 10 <sup>11</sup>                                                                               |            |
| '        |                                                                                                        |            |
|          |                                                                                                        |            |

|          | •                                                                                                      |            |
|----------|--------------------------------------------------------------------------------------------------------|------------|
|          | $0-0\mathcal{V}(e)$                                                                                    | A1         |
| 7(c)(ii) | 1. hadrons                                                                                             | B1         |
|          | 2. leptons                                                                                             | В1         |
|          |                                                                                                        |            |
| Q22      | number of protons = 92                                                                                 | <b>A</b> 1 |
| QZZ      | number of neutrons = 142                                                                               | A1         |
| 7(b)     | $5.6 \text{ MeV} = 5.6 \times 1.60 \times 10^{-19} \times 10^6 \ \ (= 8.96 \times 10^{-13} \text{ J})$ | C1         |
|          | number = $0.15/(5.6 \times 1.60 \times 10^{-13})$                                                      | A1         |
|          | = 1.7 × 10 <sup>11</sup>                                                                               |            |
|          | or                                                                                                     |            |
|          | $0.15 \text{ W} = 0.15 / (1.60 \times 10^{-19} \times 10^6) = 9.38 \times 10^{11} \text{ MeV s}^{-1}$  | (C1)       |
|          | number = $9.38 \times 10^{11} / 5.6$                                                                   | (A1)       |
|          | = 1.7 × 10 <sup>11</sup>                                                                               |            |
| ,        |                                                                                                        |            |
| Q23      | proton number = 17 and                                                                                 | A1         |
|          | nucleon number = 35                                                                                    |            |
| 7(a)(ii) | (electron) neutrino                                                                                    | B1         |

|             | 2. leptons                                                                                             | В1   |
|-------------|--------------------------------------------------------------------------------------------------------|------|
|             |                                                                                                        |      |
| <b>Q22</b>  | number of protons = 92                                                                                 | A1   |
| <b>1</b> 22 | number of neutrons = 142                                                                               | A1   |
| 7(b)        | $5.6 \text{ MeV} = 5.6 \times 1.60 \times 10^{-19} \times 10^6 \ \ (= 8.96 \times 10^{-13} \text{ J})$ | C1   |
|             | number = $0.15/(5.6 \times 1.60 \times 10^{-13})$                                                      | A1   |
|             | $= 1.7 \times 10^{11}$                                                                                 |      |
|             | or                                                                                                     |      |
|             | $0.15 \text{ W} = 0.15 / (1.60 \times 10^{-19} \times 10^6) = 9.38 \times 10^{11} \text{ MeV s}^{-1}$  | (C1) |
|             | number = $9.38 \times 10^{11} / 5.6$                                                                   | (A1) |
|             | $= 1.7 \times 10^{11}$                                                                                 |      |
|             |                                                                                                        | 1    |
| Q23         | proton number = 17 and                                                                                 | A1   |
|             | nucleon number = 35                                                                                    |      |
| 7(a)(ii)    | (electron) neutrino                                                                                    | B1   |
| 7(b)        | d/down (quark charge) is −⅓(e)                                                                         | C1   |
|             | or<br>two d/down (quark charges) is –⅔(e)                                                              |      |
|             | or<br>s/strange (quark charge) is –½(e)                                                                |      |
|             | charge = $-\frac{1}{3}(e) - \frac{1}{3}(e) - \frac{1}{3}(e)$                                           | A1   |
|             | = -1(e)                                                                                                |      |
|             |                                                                                                        | ,    |
|             | Cyrus Ishaq                                                                                            |      |
|             | ISL BLL BCCG LGS Boots IVV P5                                                                          |      |





| number of protons = 95                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| number of neutrons = 146                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Np/neptunium (nucleus) has <u>kinetic</u> energy                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| gamma/γ-radiation produced                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I = NQ/t                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $I = (6.9 \times 10^{11} \times 2 \times 1.60 \times 10^{-19})/30$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>A</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= 7.4 \times 10^{-9} \text{ A}$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $P = (6.9 \times 10^{11} \times 5.5 \times 10^{6} \times 1.60 \times 10^{-19})/30$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| = 0.020 W                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nucleus is charged                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the mass is <u>concentrated</u> in (very small) nucleus <b>or</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the majority of the mass is in (very small) nucleus                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -(1 / 3)e                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (ii) weak (nuclear force/interaction)  (iii) • mass-energy • momentum • proton number | B1<br>B1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1]<br>[2]<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| charge  Any three of the above quantities, 1 mark each                                | B3<br>B1<br>C1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                       | number of neutrons = 146  Np/neptunium (nucleus) has kinetic energy or gamma/y-radiation produced $I = NQ/t$ $I = (6.9 \times 10^{11} \times 2 \times 1.60 \times 10^{-19})/30$ $= 7.4 \times 10^{-9} \text{ A}$ $P = (6.9 \times 10^{11} \times 5.5 \times 10^{9} \times 1.60 \times 10^{-19})/30$ $= 0.020 \text{ W}$ nucleus is charged  the mass is concentrated in (very small) nucleus or the majority of the mass is in (very small) nucleus $-(1/3)e$ $2q - (1/3)e = e \text{ so } q = (2/3)e$ up /u (quarks) (allow charm or top quarks)  (a) hadron not a fundamental particle/lepton is fundamental particle or hadron made of quarks/lepton not made of quarks or strong force/interaction acts on hadrons/does not act on leptons  (b) (i) $\frac{e}{1}e^{(+)}$ or $\frac{e}{0}$ / $\frac{e}{0}$ / $\frac{e}{0}$ .  (iii) weak (nuclear force / interaction)  (iiii) • mass-energy • momentum • proton number • nucleon number • nucleon number • charge  Any three of the above quantities, 1 mark each  (c) (quark structure of proton is) up, up, down or uud  up/u (quark charge) is (+)%(e), down/d (quark charge) is $-\frac{1}{2}$ /s(e) | number of neutrons = 146  Np/neptunium (nucleus) has kinetic energy or gamma/y-radiation produced $I = NQ/t$ $I = (6.9 \times 10^{11} \times 2 \times 1.60 \times 10^{-19})/30$ $= 7.4 \times 10^{-9} \text{ A}$ $P = (6.9 \times 10^{11} \times 5.5 \times 10^{8} \times 1.60 \times 10^{-19})/30$ $= 0.020 \text{ W}$ nucleus is charged  the mass is <u>concentrated</u> in (very small) nucleus  or the majority of the mass is in (very small) nucleus  or the majority of the mass is in (very small) nucleus $(-1/3)e$ $2q - (1/3)e = e$ so $q = (2/3)e$ up/u (quarks) (allow charm or top quarks)  (a) hadron not a fundamental particle/lepton is fundamental particle or hadron made of quarks/lepton not made of quarks or strong force/interaction acts on hadrons/does not act on leptons  B1  (b) (i) $^{0}_{1}e^{(-)}$ or $^{0}_{1}\beta^{(+)}$ $^{0}_{0}V_{(e)}$ B1  (ii) weak (nuclear force / interaction)  B1  (iii) e mass-energy  momentum  proton number  nucleon number  charge  Any three of the above quantities, 1 mark each  B3  (c) (quark structure of proton is) up, up, down or uud  up/u (quark charge) is $(+)\%(e)$ , down/d (quark charge) is $-\%(e)$ | number of neutrons = 146  Np/heptunium (nucleus) has kinetic energy or gamma/r-radiation produced $I = NQ/t$ $I = (6.9 \times 10^{11} \times 2 \times 1.60 \times 10^{-19})/30$ $= 7.4 \times 10^{-9} \text{A}$ $P = (6.9 \times 10^{11} \times 5.5 \times 10^{9} \times 1.60 \times 10^{-19})/30$ $= 0.020 \text{ W}$ nucleus is charged  the mass is concentrated in (very small) nucleus or the majority of the mass is in (very small) nucleus $-(1/3)e$ $2q - (1/3)e = e \text{ so } q = (2/3)e$ up /u (quarks) (allow charm or top quarks)  (a) hadron not a fundamental particle/lepton is fundamental particle or hadron made of quarks/lepton not made of quarks or strong force/interaction acts on hadrons/does not act on leptons $B1 = [1]$ (b) (i) $\frac{0}{1}e^{(+)}$ or $\frac{0}{1}\beta^{(+)}$ $\frac{0}{0}V_{(e)}$ $\frac{0}{1}e^{(+)}$ or $\frac{0}{1}\beta^{(+)}$ $\frac{0}{1}e^{(+)}$ or $\frac{0}{1}\beta^{(+)}$ $\frac{0}{1}e^{(+)}$ or $\frac{0}{1}\beta^{(+)}$ $\frac{0}{1}e^{(-)}$ $\frac{0}{$ |



Cyrus Ishaq





ISL, BLL, BCCG, LGS, Roots IVY P5 +923008471504 Q27 a) hadron not a fundamental particle/lepton is fundamental particle or

hadron made of quarks/lepton not made of quarks

or

strong force/interaction acts on hadrons/does not act on leptons

B1 [1]

- (b) (i) proton: up, up, down/uud B1 neutron: up, down, down/udd B1 [2]
  - (ii) composition: 2(uud) + 2(udd) = 6 up, 6 down/6u, 6d B1 [1]
- (c) (i) most of the atom is empty space or the nucleus (volume) is (very) small compared to the atom B1 [1]
  - the mass is concentrated in (very small) nucleus/small region/small volume/small core

or the majority of mass in (very small) nucleus/small region/small volume/small core

Q28 (a) both electron and neutrino: lepton(s)

both neutron and proton: hadron(s)/baryon(s) B1 [2]

**B1** 

[2]

**(b) (i)** 
$${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{1}\beta + {}^{0}_{0}\nu$$

correct symbols for particles M1 correct numerical values (allow no values on neutrino) A1 [2]

(ii) up up down or uud  $\rightarrow$  up down down or udd B1 [1]

(iii) weak (nuclear) B1 [1]

| _    |                                                                                                                                                      |    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Q29  | (quark structure is) up, down, down/udd                                                                                                              | B1 |
|      | up/u has charge +⅓(e), down/d has charge -⅓(e)                                                                                                       | C1 |
|      | $+\frac{2}{3}e - \frac{1}{3}e = 0$                                                                                                                   | A1 |
| 8(b) | charge: p +1.6(0) × 10 <sup>-19</sup> (C) or +e<br>$\beta^-$ -1.6(0) × 10 <sup>-19</sup> (C) or -e<br>$\nu$ zero/0                                   | B1 |
|      | mass: p $1.67 \times 10^{-27} (\text{kg})/1.7 \times 10^{-27} (\text{kg})$<br>$\beta^ 9.1(1) \times 10^{-31} (\text{kg})$<br>$\nu$ very small/zero/0 | B1 |



| Q30  | -1 / decreases by 1                                                                                  | A1         |
|------|------------------------------------------------------------------------------------------------------|------------|
| 6(b) | I = Q/t or $Ne/t$                                                                                    | C1         |
|      | = $(9.8 \times 10^{10} \times 1.6 \times 10^{-19}) / (2.0 \times 60)$<br>= $1.3 \times 10^{-10}$ (A) | C1         |
|      | = 130 pA                                                                                             | A1         |
| 6(c) | antineutrino(s) (emitted) / other particle(s) (emitted)                                              | C1         |
|      | energy / momentum shared with antineutrino(s)                                                        | <b>A</b> 1 |
|      |                                                                                                      |            |



Cyrus Ishaq



